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Introduction
Aim of the Project

ä Modelling multivariate time series of counts.

ä Count data: Non-negative and integer-valued, and often over-dispersed
(i.e. variance > mean).

ä Various applications: Medical science, epidemiology, meteorology,
network modelling, actuarial science, econometrics and finance.

Aim of the project

Develop continuous-time models for time series of counts that

à allows for a flexible autocorrelation structure;

à can deal with a variety of marginal distributions;

à allows for flexibility when modelling cross-correlations;

à is analytically tractable.
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Introduction
Short and Incomplete Review of the Literature

ä Overall, two predominant modelling approaches:

à Discrete autoregressive moving-average (DARMA) models introduced by
Jacobs & Lewis (1978a,b).

The advantage of such stationary processes is that their marginal
distribution can be of any kind. However, this comes at the cost that the
dependence structure is generated by potentially long runs of constant
values, which results in sample paths which are rather unrealistic in many
applications (see McKenzie (2003)).

à Models obtained from thinning operations going back to the influential work
of Steutel & van Harn (1979), e.g. INARMA. See also Zhu & Joe (2003) for
related more recent work.

ä Key idea of this paper: Use trawling for modelling counts! – Nested within
the framework of ambit fields (Barndorff-Nielsen & Schmiegel (2007)) and
extends results by Barndorff-Nielsen, Pollard & Shephard (2012) and
Barndorff-Nielsen, Lunde, Shephard & Veraart (2014).
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Introduction
What is trawling...? A first ”definition”

“Trawling is a method of fishing that involves pulling a fishing net through the
water behind one or more boats. The net that is used for trawling is called a
trawl.” (Wikipedia)
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Theoretical framework
Integer-valued, homogeneous Lévy bases

ä Let N be a homogeneous Poisson random measure on Rn ×R2 with
compensator

E(N(dy,dx ,dt)) = ν(dy)dxdt ,

where ν is a Lévy measure satisfying
∫ ∞
−∞ min(1, ||y||)ν(dy) < ∞.

ä Assume that N is positive integer-valued, i.e. ν is concentrated on N.

ä Then we define an Nn-valued, homogeneous Lévy basis on R2 in terms
of the Poisson random measure as

L(dx ,dt) = (L(1)(dx ,ds), . . . ,L(n)(dx ,ds))′ =
∫ ∞

−∞
yN(dy,dx ,dt). (1)

ä The Lévy basis L is infinitely divisible with cumulant function

CL(dx ,dt)(θ)
..= log(E(exp(iθL(dx ,dt))) =

∫
R

(
eiθy − 1

)
ν(dy)dxdt

= CL′(θ)dxdt , where L′ is the Lévy seed.
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Theoretical framework
Integer-valued, homogeneous Lévy bases: The cross-correlation

ä From Feller (1968), we know that any non-degenerate distribution on Nn

is infinitely divisible if and only if it can be expressed as a discrete
compound Poisson distribution.

ä A random vector with infinitely divisible distribution on Nn always has
non-negatively correlated components.

ä We model the Lévy seed by an n-dimensional compound Poisson
process given by

L′t =
Nt

∑
j=1

Zj ,

where N = (Nt )t≥0 is an homogeneous Poisson process of rate v > 0
and the (Zj )j∈N form a sequence of i.i.d. random variables independent
of N and which have no atom in 0, i.e. not all components are
simultaneously equal to zero, more precisely, P(Zj = 0) = 0 for all j .
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Theoretical framework
Definition of a Trawl

Definition 1
A trawl for the i th component is a Borel set A(i) ⊂ R× (−∞,0] such that
Leb(A(i)) < ∞. Then, we set

A(i)
t = A(i) + (0, t), i ∈ {1, . . . ,n}.

ä Typically, we choose A(i) to be of the form

A(i) = {(x , s) : s ≤ 0, 0 ≤ x ≤ d (i)(s)}, (2)

where d (i) : (−∞,0] 7→ R is a cont. and Leb(A(i)) < ∞.

ä Then A(i)
t = A(i) + (0, t) = {(x , s) : s ≤ t , 0 ≤ x ≤ d (i)(s− t)}.

ä If d (i) is also monotonically non-decreasing, then A(i) is a monotonic
trawl.
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Theoretical framework
Definition of a Trawl Process

Definition 2
We define an n-dimensional stationary integer-valued trawl (IVT) process
(Yt )t≥0 by Yt = (L(1)(A(1)

t ), . . . ,L(n)(A(n)
t ))′,

à where
L(i)(A(i)

t ) =
∫

R×R
IA(i) (x , s− t)L(i)(dx ,ds), i ∈ {1, . . . ,n}.

à L is the n-dimensional integer-valued, homogeneous Lévy basis on R2 (see (1)).

à A(i)
t = A(i) + (0, t) with A(i) ⊂ R× (−∞,0] and Leb(A(i)) < ∞ is the trawl.

ä Wolpert & Taqqu (2005) study a subclass of general (univariate) trawl processes
(not necessarily restricted to IV) under the name “up-stairs” representation,
“random measure of a moving geometric figure in a higher-dimensional space”

ä Wolpert & Brown (2011) study so-called “random measure processes” which also
fall into the (univariate) trawling framework.
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Theoretical framework
Definition of a Trawl Process
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Examples
Negative Binomial exponential-trawl process
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Some key properties of IVT processes
Cumulants

ä The IVT process is stationary and infinitely divisible.
ä The IVT process is mixing⇒ weakly mixing⇒ ergodic.
ä The cumulant function of a trawl process is given by

C
Y (i)

t
(θ) = C

L(i)(A(i)
t
(θ) = Leb(A(i))CL′(i)(θ),

à I.e. to any infinitely divisible integer-valued law π, say, there exists a
stationary integer-valued trawl process having π as its one-dimensional
marginal law.

ä The covariance between two (possibly shifted) components 1 ≤ i ≤ j ≤ n
for t ,h ≥ 0 is given by

Cov
(

L(i)(A(i)
t ),L(j)(A(j)

t+h)
)
= Leb

(
A(i) ∩ A(j)

h

)(∫
R

∫
R

yiyj ν
(i,j)(dyi ,dyj )

)
,

Cor (L(i)(A(i)
t ),L(i)(A(i)

t+h)) =
Leb(A(i) ∩ A(i)

h )

Leb(A(i))
.
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Multivariate law of the Lévy seed
Poisson mixtures

ä The law of L′ is of discrete compound Poisson type by construction.

ä Use Poisson mixtures based on random additive effect models, see
Barndorff-Nielsen et al. (1992).

ä Consider random variables X1, . . . ,Xn and Z1, . . . ,Zn, such that,
conditionally on {Z1, . . . ,Zn}, the X1, . . . ,Xn are independent and
Poisson distributed with means given by the {Z1, . . . ,Zn}.

ä Model the joint distribution of the {Z1, . . . ,Zn} by a so-called additive
effect model as follows:

Zi = αiU + Vi , i = 1, . . . ,n,

where the random variables U,V1, . . . ,Vn are independent and the
α1, . . . , αn are nonnegative parameters.

ä We have explicit formulas for the joint law of (X1, . . . ,Xn) and

E(Xi ) = αi E(U) + E(Vi ), i = 1, . . . ,n,
Cov(Xi ,Xj ) = αi αj Var(U), if i 6= j .
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Theoretical results
Representation as compound Poisson distribution and as a multivariate
negative binomial distribution

ä The Poisson mixture model of random-additive-effect type can be
represented as a compound Poisson distribution

ä If U and Vis follow suitable Gamma distributions, then negative binomial
marginal law can be achieved allowing for

à 1) independence,

à 2) complete dependence, or

à 3) dependence with additional independent factors between the
components.

ä Recall that the (multivariate) negative binomial distribution can be
represented as a compound Poisson distribution with (multivariate)
logarithmic jump size distribution.

ä The representation result is used in the simulation algorithm for the
multivariate trawl process.
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Key properties of IVT processes
Overview

Flexible marginal distributions:

ä Poisson trawl process;

ä Negative binomial trawl process;

ä other compound Poisson distributions.

Various choices of the trawl function:

ä Superpositions of exponential trawls: d (i)(z) =
∫ ∞

0 eλz π(i)(dλ), for z ≤ 0, for a
probability measure π(i) on (0,∞).

ä Possibility of allowing for long memory.
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Inference
(Generalised) Method of Moments

ä Use a (generalised) method of moments in a two-stage
equation-by-equation approach to estimate the marginal parameters first,
followed by the dependence parameters.

ä Step 1a) Use the acf r (i)(h) = Leb(A(i)∩A(i)
h )

Leb(A(i))
to infer the trawl parameters.

ä Step 1b) Use the cumulant function C
Y (i)

t
(θ) = Leb(A(i))CL′(i)(θ) to infer

the marginal parameters of the Lévy basis.

ä Step 2a) Compute Leb(A(i) ∩ A(j)) for i 6= j .

ä Step 2b) Use the cross-covariance function

Cov
(

L(i)(A(i)
t ),L(j)(A(j)

t )
)
= Leb

(
A(i) ∩ A(j)

)(∫
R

∫
R

yiyj ν
(i,j)(dyi ,dyj )

)
to infer the dependence parameters.
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Empirical illustration
High frequency financial data from LOBSTER

ä Study high frequency limit order book data from LOBSTER.

ä We picked the Apple data for August 8, 2017: Start at 11:00am, end at
12:00 (noon).

ä We analyse the joint behaviour of the number of newly submitted and
fully deleted limit orders over 5s intervals (720 observations in total).

ä We fit a bivariate trawl model with double exponential trawl function and
bivariate negative binomial law.

ä Summary statistic:

Min 1st Quartile Median Mean 3rd Quartile Max
No. of submissions 0.00 19.00 44.00 53.46 74.25 290.00
No. of cancellations 0.00 22.00 38.00 46.77 63.00 243.00
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Number of limit order submissions and deletions
Time series, acf and crosscorrelation
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Number of limit order submissions and deletions
Histograms: submissions (right), full cancellations (top)
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Empirical illustration
Fitted trawl (sum of two exponentials) to number of submissions and deletions
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Empirical illustration
Fitted bivariate negative binomial marginal fit (to number of submissions and
deletions)
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Empirical illustration
Fitted bivariate negative binomial: Bivariate histogram assessment
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Main contributions

ä New continuous-time framework for modelling multivariate stationary,
serially correlated count data.

ä Two key components:
à Integer-valued, homogeneous Lévy basis: Generates random point pattern

and determines marginal distribution and cross-sectional dependence.
à Trawl: Thins the point pattern and determines the autocorrelation structure.

ä Simulation algorithm & parameter estimation of IVT processes with
monotonic trawl.

ä Simulation studies reveal good performance of (generalised) method of
moments and quasi-maximum-likelihood methods for parameter
estimation.

ä Empirical application to high frequency financial data.
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You want to know more...?!

ä Preprint: Available on my website (article forthcoming in the Journal of
Multivariate Analysis).

ä New R package trawl available on CRAN.

ä Many more details in our new book:
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